高应变In_xGa_{1-x}As薄膜的结晶质量及光学特性

亢玉彬,唐吉龙*,张健,方铉,房丹,王登魁,林逢源,魏志鹏 长春理工大学高功率半导体激光国家重点实验室,吉林长春 130022

摘要 通过分子束外延(MBE)生长技术,在 GaAs(100)基片上生长出单晶In_xGa_{1x}As薄膜,利用反射高能电子衍 射仪(RHEED)实时监控薄膜生长情况。对In_xGa_{1x}As薄膜进行了 X 射线衍射(XRD)测试,结果显示该薄膜为高 质量薄膜,且 In 组分(原子数分数)为 0.51。光致发光(PL)光谱测试结果表明,室温下发光峰位约为 1.55 μm;由于 In_xGa_{1x}As薄膜中存在压应变,光谱峰位出现蓝移。Raman 光谱显示 GaAs-like 横向光学声子(TO)模式的峰出现 了明显展宽,验证了In_xGa_{1x}As薄膜中存在应变。

关键词 薄膜;应变;拉曼光谱;光致发光;分子束外延;实时监测 中图分类号 O484 __________文献标识码 A

doi: 10.3788/CJL201946.0203002

Crystallization Quality and Optical Properties of High Strain In_xGa_{1-x}As Film

Kang Yubin, Tang Jilong^{*}, Zhang Jian, Fang Xuan, Fang Dan, Wang Dengkui, Lin Fengyuan, Wei Zhipeng

State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Jilin, Changchun 130022, China

Abstract Single crystal $\ln_x \operatorname{Ga}_{1-x} \operatorname{As}$ film is grown on a GaAs (100) substrate through molecular beam epitaxy (MBE) growth technique, and the growth of $\ln_x \operatorname{Ga}_{1-x} \operatorname{As}$ film is monitored in real time by a reflective high energy electron diffractometer (RHEED). The $\ln_x \operatorname{Ga}_{1-x} \operatorname{As}$ film is characterized by X-ray diffraction (XRD), and the $\ln_x \operatorname{Ga}_{1-x} \operatorname{As}$ exhibits a high-quality film with the In component (atomic fraction) of 0.51. The luminescence peak at room temperature is found to be around 1.55 μ m by photoluminescence (PL) spectroscopy, and the blue shift of the spectrum is observed due to the existence of compression strain in the $\ln_x \operatorname{Ga}_{1-x} \operatorname{As}$ film. The Raman spectra show that the peak of the GaAs-like transverse (TO) optic phonon mode is obviously broadened, which proves that the strain exists in the ternary alloy $\ln_x \operatorname{Ga}_{1-x} \operatorname{As}$ film.

Key words films; strain; Raman spectra; photoluminescence; molecular beam epitaxy; real-time detection OCIS codes 310.6188; 310.4925; 300.6450; 300.6280

1 引 言

III-V 族化合物半导体材料具有电子迁移率 高^[1]、少子寿命短^[2]、抗辐射能力强^[3]及电阻温度系 数小^[4]等优点,在半导体器件、集成电路等方面有重 要的应用。半导体 III-V 族二元合金半导体材料不 具备在发射光波长为 1.3~1.55 μm 的通信窗口直 接跃迁能带的特性。而对于由 III-V 族二元合金 GaAs-InAs 组成的三元合金半导体材料In_xGa_{1-x}As (x 为三元合金中 In 的原子数分数),在室温下带隙 可以在 0.87 μm(GaAs)到 3.5 μm(InAs)范围内调 谐,这使得其相对于其他材料,在能带结构工程及各 种光电器件(如光纤通信系统、红外发光二极管、光 电探测器^[5-9])中更具吸引力。化合物的光电特性与

收稿日期: 2018-08-31; 修回日期: 2018-09-26; 录用日期: 2018-10-14

基金项目:国家自然科学基金(61474010,61574022,11674038)、国家重点研发计划(2017YFB0402800)、吉林省科技发展 计划(20160519007JH,20160101255JC)、吉林省科技厅重大科技招标专项(20160203015GX)、长春理工大学科技创新基金 (XJJLG-2016-11,XJJLG-2016-14)

^{*} E-mail: jl_tangcust@163.com

材料界面的应变存在密切的关系,由于 $In_x Ga_{1-x} As$ 与 GaAs 衬底存在晶格失配,随着 In 组分的增加失配应力将持续增加,这使得在 GaAs 衬底上外延高结晶质量的 $In_x Ga_{1-x} As$ 薄膜成为研究的热点与难点。目前,国内一些课题组使用分子束外延(MBE)^[10-12]、金属有机化学气相沉积(MOCVD)^[13-15]、电共沉积等方法制备 $In_x Ga_{1-x} As$ 薄膜^[16],由于存在晶格失配,大多数研究都集中在低 In 组分,但针对通信波段 1.55 μ m 附近的高 In 组分的 $In_x Ga_{1-x} As$ 薄膜鲜有报道。

本文利用配有反射高能电子衍射仪(RHEED) 原位监测装置的 MBE 设备生长出高结晶质量的 In_xGa_{1-x}As薄膜,在生长过程中对 GaAs 衬底进行 脱氧处理,外延 GaAs 缓冲层及外延In_xGa_{1-x}As薄 膜进行实时监控并记录。对生长出的In_xGa_{1-x}As薄 膜进行 X 射线衍射(XRD)测试,显示生长出的为高 结晶质量的单晶薄膜。光致发光(PL)测试显示峰 位出现蓝移,说明在In_xGa_{1-x}As薄膜中可能存在压 应变。最后拉曼(Raman)光谱显示 GaAs-like 横向 光学声子(TO)的峰相比于 GaAs-like 纵向光学声 子(LO)的峰出现明显的展宽,证实了在In_xGa_{1-x}As 薄膜中存在应变。

2 实 验

本实验是在超高真空(~2.2×10⁻⁸ Pa)MBE 及 RHEED 联合系统中实现,所使用的衬底为 n-型 GaAs(100)基片。在生长前先对衬底进行除气处 理:首先,将衬底放入进样室(loadlock)中,200 ℃下 加热处理 2 h 去除基片上吸附的水汽;其次,将衬底 转移到预处理室(buffer)中,400 ℃下加热2h进行 预除气:最后,把即将进行薄膜生长的衬底转移到生 长室中,且在高温环境中再次进行 30 min 除气处 理。在生长实验开始之前,用束流器(BFM)对外延 所需的各个材料源的束流进行校准,得到生长所需 的束流。用热偶标称温度对衬底所需的温度进行校 准。GaAs 衬底在 550 ℃下脱氧处理后,降温到 450 ℃, As 束流压(BEP)为 1.7×10⁻⁴ Pa, V/III 束 流比为 22, 生长出 GaAs 缓冲层, 生长时间为 15 min。降低生长温度至 350 ℃, 生长出 In_xGa_{1-x}As薄膜,As 束流压为 1.3×10⁻⁴ Pa,Ga 束 流压为 7.9×10⁻⁶ Pa, In 束流压为 1.9×10⁻⁶ Pa, 生 长时间为 30 min。在整个过程中通过 RHEED 进 行实时监测并记录。对生长出的In_xGa_{1-x}As薄膜, 采用德国布鲁克公司 D8 DISCOVER X 射线衍射 仪进行测试获得 In_x Ga_{1-x} As薄膜及 GaAs 衬底的 XRD 图,从中可以得出 In_x Ga_{1-x} As三元合金的组分 及结晶质量。用配有 InGaAs 探测器的 HORIBA iHR550 光谱仪记录 PL 光谱,用 655 nm 波长半导 体二极管激光器作为激发源,采用 LabRAM HR Evolution, HORIBA 光谱仪得到 In_x Ga_{1-x} As薄膜 Raman 光谱图。

3 结果与讨论

图 1 为衬底处理及样品生长整个过程中的 RHEED 衍射图样实时监测图。图 1(a)中 GaAs 衬 底在温度为 450 ℃, As 束流的保护下进行脱氧处 理,RHEED 衍射图样显示为明亮的透射斑点,这说 明在富 As 条件下,衬底表面进行了完全脱氧处理, 且衬底表面呈现三维岛状结构。在 GaAs 缓冲层生 长过程中,由于在 GaAs 衬底表面,原子之间存在吸 附、脱附、迁移、结合等过程,随着缓冲层的生长,三 维岛状结构将向二维层状结构转变,在 RHEED 衍 射图样中表现为在劳厄环上的衍射斑点为主、而在 斑点的基片表面法线方向有较弱的条纹拉长趋势, 如图 1(b) 所示。图 1(c) 为 In 开始加入生长的 In_rGa_{1-r}As薄膜的 RHEED 衍射图样, RHEED 衍 射图像上显示透射斑点被拉长成条纹状,这是因为 在 GaAs 缓冲层和In, Gal, As薄膜接触层之间存在 一定的晶格失配,且在In_xGa_{1-x}As薄膜的几个原子 层表面有较大的粗糙度。随着In_xGa_{1-x}As薄膜生长 时间的增加,准三维结构逐渐向二维层状结构过渡, 最后图 1(d)中 RHEED 衍射图像显示In_xGa_{1-x}As薄 膜为亮度较弱的拉长的条纹,且背景颜色微微变亮。 文献[17]通过隧穿透射电镜(STM)证实薄膜表面 呈现原子级平整度。因此,RHEED 衍射图像显示 生长出晶格失配较大的、高结晶质量的In_xGa_{1-x}As 薄膜。

图 2 中显示In_xGa_{1-x}As薄膜的光学照片及对应 的 XRD 图。图 2(a)为在 5 cm GaAs 衬底上生长的 In_xGa_{1-x}As薄膜的光学照片,将整个薄膜区域等分 成四个不同的区域,分别标记为 1、2、3、4。而四个 区域最外侧环形区域由于有卡托压住片子边缘因此 无法生长出In_xGa_{1-x}As薄膜。图 2(b)中的插图是所 生长的In_xGa_{1-x}As薄膜的结构。为使In_xGa_{1-x}As薄 膜的结晶质量更好,先在除气完成的 GaAs 衬底上 生长出 GaAs 缓冲层,使整个 GaAs 缓冲层表面平 整,图 1(b)中的再构线显示其具备完整的平面。 图2(b)对应图2(a)In_xGa_{1-x}As薄膜四个不同区域

图 1 生长过程中的 RHEED 衍射图像。(a)进行脱氧处理的 GaAs 衬底;(b)生长的 GaAs 缓冲层; (c) In 组分加入生长的In_xGa_{1-x}As薄膜;(d)生长的In_xGa_{1-x}As薄膜

Fig. 1 RHEED diffraction pattern during growth. (a) Deoxidation processing of GaAs substrate; (b) growth of GaAs buffer layer; (c) growth of In_x Ga_{1-x} As film by adding In component; (d) growth of In_x Ga_{1-x} As film

及对应 GaAs 衬底的 XRD 图,从图 2(b)中可以得到 GaAs 衬底的衍射峰 2 θ 对应的角度为 33.13°,而在 GaAs 衬底上生长的In_x Ga_{1-x} As薄膜对应的衍射峰 2 θ 为 31.76°, 对应的衬底为 33.10°, In_x Ga_{1-x} As 薄膜和 GaAs 衬底对应的半峰全宽分别为 0.137°和 0.094°, 所 以得到的In_x Ga_{1-x} As薄膜是均匀的高结晶质量薄膜。

图 2 In_xGa_{1-x}As薄膜的光学照片及对应的 XRD 图。(a)光学照片;(b) XRD 图像 Fig. 2 Optical photograph of In_xGa_{1-x}As film and corresponding XRD image. (a) Optical photograph; (b) XRD image

确定 In_xGa_{1-x}As薄膜对应的衍射峰后,查阅数 据手册^[18]可知, InAs 晶格常数为 0.6058 nm (300 K),根据布拉格公式

$$2d\sin\theta = n\lambda, \qquad (1)$$

式中,*d* 为晶面间距,*θ* 为入射 X 射线与相应晶面夹 角,*n* 为衍射级数,λ 为波长,及面间距公式

$$d_{\rm hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}},$$
 (2)

式中,h、k、l 为密勒指数,a 为晶格常数,可以计算 出 GaAs 和 In_xGa_{1-x}As 对应的晶格常数分别为 0.5648 nm和 0.5858 nm。根据 Vegard's law(韦德) 公式

$$a_{\ln_x Gal-x As} = (1-x)a_{GaAs} + xa_{InAs},$$
 (3)

可以得到 $In_xGa_{1-x}As$ 三元合金中 In 的组分(原子数 分数) $x^{[19]}$,其中晶格常数a的下角标为对应的半导 体材料。 $In_xGa_{1-x}As$ 外延层的应变 ε 定义为两层晶 格常数的相对差异^[20]:

$$\varepsilon = \frac{a_{\text{GaAs}} - a_{\text{InGaAs}}}{a_{\text{InGaAs}}} \times 100\%, \qquad (4)$$

可以得到在三元合金In_xGa_{1-x}As薄膜中 In 的组分

为 0.51, 薄膜中存在的应变为一3.58%, 因此在薄膜 中存在的应力为压应力。

根据 300 K 时 III-V 族三元合金的带隙随组分 变化的依赖关系,直接带隙材料 $In_x Ga_{1-x} As$ 的禁带 宽度 E_g 值为^[20-21]

 $E_{g} = 1.425 - 1.501x + 0.436x^{2}$ 。 (5) 对于每一种特定组分的半导体材料,均有一本征吸 收的长波限,此波限可以表示为

$$\lambda = \frac{1.24}{E_{\rm g}} (\mu {\rm m})_{\circ} \tag{6}$$

根据 XRD 的结果得到 $In_x Ga_{1-x} As$ 薄膜 In 组分为 0.51,对应的室温发光波长约为 1604 nm。图 3 为 三元合金 $In_x Ga_{1-x} As$ 薄膜在温度 T = 300 K 下的光 致发光谱图,图 3 中 E_c 为导带能级, E_v 为价带能 级,上角标代表对应的半导体材料,从图中可以得到 发光峰位对应的位置为 1560 nm。

在室温下, ΔE_{\circ} 随 In 组分的变化关系式表示为^[22]

$$\Delta E_{\rm c} = (0.53 \pm 0.05) x \,, \tag{7}$$

根据室温下 GaAs 的带隙, In_xGa_{1-x}As薄膜的带隙

及对应的 ΔE_c 可以得到生长的 GaAs/In_xGa_{1-x}As 异质结构的能带结构示意图,如图 3 中插图所示。 根据 PL 光谱及对应的能带可以计算出当三元 In_xGa_{1-x}As合金中发光波长约为 1560 nm 时,In 的 组分为 0.49,这与 XRD 的测试结果存在偏差。这 可能是由于 GaAs 缓冲层和In_xGa_{1-x}As薄膜之间的 失配较大导致存在的应力使得In_xGa_{1-x}As薄膜的发 光峰出现了蓝移,因此从光谱测试结果中推算出三 元合金中 In 的组分偏小。

图 3 In_xGa_{1-x}As薄膜室温下的 PL 光谱, 插图为室温下发光对应的能带图

Fig. 3 PL spectra of In_x Ga_{1-x} As film at room temperature, inset shows energy band diagram corresponding to luminescence at room temperature

为了进一步证明在三元合金In_xGa_{1-x}As薄膜中 存在应变,对In_xGa_{1-x}As薄膜进行 Raman 光谱分 析。图 4 中深红色为对应 GaAs 衬底的 Raman 光 谱,从光谱可以得到衬底的 Raman 峰存在两种模 式,分别是 GaAs TO 和 GaAs LO,对应的峰位分别 为 268.8 cm⁻¹ 和 290.4 cm⁻¹。在In_rGa_{1-r}As合金中 显示出双模式声子特性,涉及到 InAs-like 和 GaAslike 模式,但是它们分别存在两种模式,即为 like TO和 like LO^[23-25]。图 4 中黑色对应为In_xGa_{1-x}As 薄膜的 Raman 光谱,从谱线上可以得到其由多个模 式的峰组合而成。为了确定多个 Raman 光谱峰的 来源,对In,Gal-,As薄膜的 Raman 光谱进行分峰处 理,得到主要存在三个峰:红色、蓝色和粉红色的光 谱。这三个模式的峰对应的峰位分别为 233.1、 256.8、270.2 cm⁻¹。根据文献[25-27],这三个峰位 对应的模式分别为 InAs-like LO、GaAs-like TO、 GaAs-like LO。在三元合金 In_xGa_{1-x}As 薄膜中, InAs-like TO, InAs-like LO, GaAs-like TO, GaAslike LO 模式对应的 Raman 峰位 ω 随着 In 组分的 变化方程为(其中下角标代表 Raman 峰模式)

 $\omega_{\text{GaAs-like LO}} = -32.4x^2 - 18.6x + 290.4, \quad (8)$

$$\omega_{\text{GaAs-like TO}} = -29.0x^2 - 5.3x + 268.8, \quad (9)$$
$$\omega_{\text{InAs-like LO}} = 8.92x^2 - 7.7x + 234.9, \quad (10)$$

$$\omega_{\text{InAs-like TO}} = -16.5x^2 + 233.7.$$
(11)

根据(8)~(10)式可以得到 $In_xGa_{1-x}As$ 三元合 金薄膜对应的 Raman 光谱存在三种模式的峰,与文 献中对应的模式一致。可以计算出在 $In_xGa_{1-x}As$ 三 元合金中 In 的组分为 0.55 左右,与 XRD 和光谱比 较都有误差,这可能是由于激光作用在薄膜表面使 表面出现局部过热,造成 In 组分偏高,本文对此不 作过多的讨论。图 4 中 $In_xGa_{1-x}As$ 薄膜的 Raman 光谱中 GaAs-like TO 模式的峰出现明显的展宽,这 说明在 $In_xGa_{1-x}As$ 薄膜中存在应力,这与文献[25] 的结果一致。

图 4 In_x Ga_{1-x} As薄膜及 GaAs 衬底在室温下的 Raman 光谱 Fig. 4 Raman spectra of In_x Ga_{1-x} As film and GaAs substrate at room temperature

4 结 论

使用分子束外延设备生长了In_xGa_{1-x}As薄膜, 并通过 RHEED 进行实时监测。RHEED 衍射图样 显示In_xGa_{1-x}As薄膜具有明显的再构线且薄膜表面 呈现原子级别的平整度,XRD 测试显示生长的 In_xGa_{1-x}As薄膜具有高结晶质量,且计算出三元合 金中 In 组分为 0.51,In_xGa_{1-x}As薄膜中存在压应 力,且应变大小约为一3.58%。PL 光谱测试 In_xGa_{1-x}As薄膜由于压应变存在,发光峰位出现蓝 移且发光峰位为 1560 nm。Raman 光谱显示 In_xGa_{1-x}As薄膜存在多个模式,GaAs-like TO 模式 峰出现明显的展宽,说明在三元合金In_xGa_{1-x}As薄 膜中存在应变。

参考文献

[1] Lester L F, Hwang K C, Ho P, et al. Ultrafast long-wavelength photodetectors fabricated on lowtemperature InGaAs on GaAs [J]. IEEE Photonics Technology Letters, 1993, 5(5): 511-514.

- [2] Gupta S, Whitaker J F, Mourou G A. Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures [J]. IEEE Journal of Quantum Electronics, 1992, 28(10): 2464-2472.
- [3] Wu J, Walukiewicz W, Yu K M, et al. Superior radiation resistance of In_{1-x} Ga_x N alloys: Full-solarspectrum photovoltaic material system[J]. Journal of Applied Physics, 2003, 94(10): 6477-6482.
- [4] Ohno H, Munekata H, Penney T, et al. Magnetotransport properties of p-type (In, Mn) As diluted magnetic III-V semiconductors [J]. Physical Review Letters, 1992, 68(17): 2664-2667.
- [5] Heimbuch M E, Holmes A L, Reaves C M, et al. Tertiarybutylarsine and tertiarybutylphosphine for the MOCVD growth of low threshold 1.55 μm In_x Ga_{1-x} As/InP quantum-well lasers[J]. Journal of Electronic Materials, 1994, 23(2): 87-91.
- [6] Xia N, Fang X, Rong T Y, et al. Effect of surface sulfur passivation on photoresponse characteristics of GaAs materials[J]. Chinese Journal of Lasers, 2018, 45(6): 0603002

夏宁, 方铉, 容天宇, 等. 表面硫钝化对 GaAs 材料 光响应特性的影响 [J]. 中国激光, 2018, 45(6): 0603002.

- [7] Ponomarev D S, Khabibullin R A, Yachmenev A E, et al. Intensive terahertz radiation from $In_x Ga_{1-x}$ As due to photo-dember effect [J]. International Journal of High Speed Electronics and Systems, 2016, 25 (3): 1640023.
- [8] Lee H J, Jang I K, An W C, et al. Enhanced output power of InGaAs/GaAs infrared light-emitting diode with Ga_x In_{1-x} P tensile strain barrier [J]. Current Applied Physics, 2017, 17(12): 1582-1588.
- [9] Kim D K, Lee H J, An W C, et al. Dependence of laminar flow fluctuation on indium composition in In_{0.07}GaAs/GaAs quantum wells for 940-nm infrared light-emitting diodes [J]. Journal of the Korean Physical Society, 2018, 72(9): 1020-1024.
- [10] Luo Z J, Ni Z F, Ding Z, et al. The critical thickness of In_xGa_{1-x}As/GaAs heterofilms [J]. Journal of Functional Materials, 2018, 49(8): 8166-8171.
 罗子江, 倪照风, 丁召, 等. In_xGa_{1-x}As/GaAs 异质 薄膜的临界厚度[J]. 功能材料, 2018, 49(8): 8166-

> 溥脵的临芥厚皮 [J]. 功能材料,2018,49(8):816 8171.

[11] Luo Z J, Zhou X, He Y Q, et al. The MBE growth research on different composition of In of InGaAs films under the real-time monitoring of RHEED[J]. Journal of Functional Materials, 2011, 42(11): 2107-2111. 罗子江,周勋,贺业全,等. RHEED 实时监控下 MBE 生长不同 In 组分的 InGaAs 薄膜[J].功能材 料,2011,42(11):2107-2111.

- [12] Guo X, Wang Y, Wei W Z, et al. Study on the surface morphology of In_x Ga_{1-x} As film subjected to varying stresses[J]. Materials Review, 2015, 29(2): 21-23, 37.
 郭祥, 王一,魏文喆,等.不同应力下的In_x Ga_{1-x} As 薄膜表面形貌[J].材料导报, 2015, 29(2): 21-23, 37.
- [13] Liu B L, Yang S R, Chen B J, et al. InGaAs/InP strained quantum well LD by LP-MOCVD[J]. Acta Photonica Sinica 1996, 25(5): 434-438.
 刘宝林,杨树人,陈伯军,等. LP: MOCVD 研制 InGaAs/InP 应变量子阱 LD[J]. 光子学报, 1996, 25(5): 434-438.
- [14] Liu Y, Li L, Qiao Z L, et al. Optical characteristics of 1.06 μm InGaAs/GaAs quantum well grown by MOCVD[J]. Chinese Journal of Lasers, 2014, 41 (11): 1106001.
 刘洋,李林,乔忠良,等. MOCVD 生长 1.06 μm 波 段 InGaAs/GaAs 单量子阱材料的发光特性研究[J]. 中国激光, 2014, 41(11): 1106001.
- [15] Zhu L D, Li J, Chen D Y, et al. Low pressure MOCVD growth and characterization of InGaAs/InP bulk materials, quantum wells and superlattices [J]. Chinese Journal of Semiconductors, 1993, 14 (4): 208-216.
 朱龙德,李晶,陈德勇,等. InGaAs/InP体材料和量 子阱、超晶格材料的低压 MOCVD 生长及材料特性 的测试分析[J].半导体学报, 1993, 14(4): 208-216.
- [16] Wang X L, Li Y C, Han A Z, et al. Preparation and performance of InGaAs thin film by electrodeposit
 [J]. Chinese Journal of Material Research, 2001, 15 (4): 451-454.
 王喜莲,李浴春,韩爱珍,等. 用电共沉积方法制备 InGaAs薄膜[J]. 材料研究学报, 2001, 15(4): 451-454.
- [17] Luo Z J, Zhou X, Yang Z R, et al. The MBE growth research on InGaAs/GaAs heterofilms [J]. Journal of Functional Materials, 2011, 42(5): 846-849.
 罗子江,周勋,杨再荣,等. InGaAs/GaAs 异质薄膜的 MBE 生长研究[J]. 功能材料, 2011, 42(5): 846-849.
- [18] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys[J]. Journal of Applied Physics, 2001, 89 (11): 5815-5875.
- [19] Deki R, Sasaki T, Takahasi M. Strain relaxation and compositional separation during growth of InGaAs/

GaAs(001)[J]. Journal of Crystal Growth, 2017, 468: 241-244.

- [20] Arent D J, Deneffe K, van Hoof C, et al. Strain effects and band offsets in GaAs/InGaAs strained layered quantum structures [J]. Journal of Applied Physics, 1989, 66(4): 1739-1747.
- [21] Nahory R E, Pollack M A, Johnston W D Jr, et al. Band gap versus composition and demonstration of Vegard's law for In_{1-x} Ga_x As_y P_{1-y} lattice matched to InP[J]. Applied Physics Letters, 1978, 33(7): 659-661.
- [22] Sugiyama Y, Inata T, Fujii T, *et al.* Conduction band edge discontinuity of $In_{0.52} Ga_{0.48} As/In_{0.52} (Ga_{1-x} Al_x)_{0.48} As(0 \le x \le 1)$ heterostructures [J]. Japanese Journal of Applied Physics, 1986, 25(8): L648-L650.
- [23] Brodsky M H, Lucovsky G. Infrared reflection spectra of Ga_{1-x} In_x As: a new type of mixed-crystal

behavior [J]. Physical Review Letters, 1968, 21 (14): 990-993.

- [24] Pearsall T P, Carles R, Portal J C. Single longitudinal-mode optical phonon scattering in Ga_{0.47} In_{0.53} As[J]. Applied Physics Letters, 1983, 42 (5): 436-438.
- [25] Emura S, Gonda S I, Matsui Y, et al. Internalstress effects on Raman spectra of In_x Ga_{1-x} As on InP
 [J]. Physical Review B, 1988, 38(5): 3280-3286.
- [26] Yu S J, Asahi H, Emura S, et al. Raman scattering study of thermal interdiffusion in InGaAs/InP superlattice structures [J]. Journal of Applied Physics, 1991, 70(1): 204-208.
- [27] Estrera J P, Stevens P D, Glosser R, et al. Phonon mode study of near-lattice-matched In_x Ga_{1-x} As using micro-Raman spectroscopy [J]. Applied Physics Letters, 1992, 61(16): 1927-1929.